444 research outputs found

    Comparison and Mapping Facilitate Relation Discovery and Predication

    Get PDF
    Relational concepts play a central role in human perception and cognition, but little is known about how they are acquired. For example, how do we come to understand that physical force is a higher-order multiplicative relation between mass and acceleration, or that two circles are the same-shape in the same way that two squares are? A recent model of relational learning, DORA (Discovery of Relations by Analogy; Doumas, Hummel & Sandhofer, 2008), predicts that comparison and analogical mapping play a central role in the discovery and predication of novel higher-order relations. We report two experiments testing and confirming this prediction

    Orientation Sensitivity at Different Stages of Object Processing: Evidence from Repetition Priming and Naming

    Get PDF
    An ongoing debate in the object recognition literature centers on whether the shape representations used in recognition are coded in an orientation-dependent or orientation-invariant manner. In this study, we asked whether the nature of the object representation (orientation-dependent vs orientation-invariant) depends on the information-processing stages tapped by the task

    Long-Term Survival With Tafamidis in Patients With Transthyretin Amyloid Cardiomyopathy

    Get PDF
    BACKGROUND: Tafamidis is approved in many countries for the treatment of transthyretin amyloid cardiomyopathy. This study reports data on the long-term efficacy of tafamidis from an ongoing long-term extension (LTE) to the pivotal ATTR-ACT (Tafamidis in Transthyretin Cardiomyopathy Clinical Trial). METHODS: Patients with transthyretin amyloid cardiomyopathy who completed ATTR-ACT could enroll in an LTE, continuing with the same tafamidis dose or, if previously treated with placebo, randomized (2:1) to tafamidis meglumine 80 or 20 mg. All patients in the LTE transitioned to tafamidis free acid 61 mg (bioequivalent to tafamidis meglumine 80 mg) following a protocol amendment. In this interim analysis, all-cause mortality was assessed in patients treated with tafamidis meglumine 80 mg in ATTR-ACT continuing in the LTE, compared with those receiving placebo in ATTR-ACT transitioning to tafamidis in the LTE. RESULTS: Median follow-up was 58.5 months in the continuous tafamidis group (n=176) and 57.1 months in the placebo to tafamidis group (n=177). There were 79 (44.9%) deaths with continuous tafamidis and 111 (62.7%) with placebo to tafamidis (hazard ratio, 0.59 [95% CI, 0.44-0.79]; P<0.001). Mortality was also reduced in the continuous tafamidis (versus placebo to tafamidis) subgroups of: variant transthyretin amyloidosis (0.57 [0.33-0.99]; P=0.05) and wild-type transthyretin amyloidosis (0.61 [0.43-0.87]; P=0.006); and baseline New York Heart Association class I and II (0.56 [0.38-0.82]; P=0.003) and class III (0.65 [0.41-1.01]; P=0.06). CONCLUSIONS: In the LTE, patients initially treated with tafamidis in ATTR-ACT had substantially better survival than those first treated with placebo, highlighting the importance of early diagnosis and treatment in transthyretin amyloid cardiomyopathy. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01994889 and NCT02791230

    Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans

    Get PDF
    BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians

    Diastolic function measurements and diagnostic consequences: a comparison of pulsed wave- and color-coded tissue Doppler imaging

    Get PDF
    Tissue Doppler imaging (TDI) plays an important role in assessing diastolic function using echocardiography. However, two different methods [pulsed wave (PW-TDI) and color-coded (CC-TDI)] are currently used. We aimed to compare both measurements. We included 114 patients that were referred to our echocardiography department for evaluation of diastolic left ventricular function. In these patients, we sequentially measured tissue velocities of basal lateral and septal myocardium of the left ventricle in an apical four-chamber view with both PW-TDI and CC-TDI. Our cohort consisted of a heterogeneous group of patients with and without a history of cardiac disease. Mean age of the patients was 52 +/- A 16.7 years, and 62% were males. We found a strong correlation between PW-TDI- and CC-TDI-derived myocardial velocities (r = 0.93; p = 0.001). However, E' (mean of lateral and septal) velocities measured with PW-TDI were consistently higher compared to CC-TDI values [PW-TDI E' 10.3 +/- A 3.9 (SD) cm/s vs. CC-TDI E' 7.7 +/- A 3.1 cm/s; p <0.001]. From these data, we calculated that the relation between E' measured with PW-TDI and CC-TDI can be described as: E' (PW-TDI) = 1.25 + 1.17 x E' (CC-TDI). Consequently, E/E' measured with PW-TDI was consistently lower compared with CC-TDI (9.1 +/- A 3.1 vs. 12.5 +/- A 5.7; p <0.001) From these data, we calculated that the relation between E/E' measured with PW-TDI and CC-TDI can be described as: E/E' (PW-TDI) = 2.13 + 0.56 x E/E' (CC-TDI). Despite a strong correlation, tissue velocities measured with PW-TDI will yield higher values as compared with CC-TDI. This should be taken into account when defining cut-off values for the evaluation of diastolic function

    Structural Olfactory Nerve Changes in Patients Suffering from Idiopathic Intracranial Hypertension

    Get PDF
    BACKGROUND: Complications of idiopathic intracranial hypertension (IIH) are usually caused by elevated intracranial pressure (ICP). In a similar way as in the optic nerve, elevated ICP could also compromise the olfactory nerve system. On the other side, there is growing evidence that an extensive lymphatic network system around the olfactory nerves could be disturbed in cerebrospinal fluid disorders like IIH. The hypothesis that patients with IIH suffer from hyposmia has been suggested in the past. However, this has not been proven in clinical studies yet. This pilot study investigates whether structural changes of the olfactory nerve system can be detected in patients with IIH. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three patients with IIH and 23 matched controls were included. Olfactory bulb volume (OBV) and sulcus olfactorius (OS) depth were calculated by magnetic resonance techniques. While mean values of total OBV (128.7±38.4 vs. 130.0±32.6 mm(3), p=0.90) and mean OS depth (8.5±1.2 vs. 8.6±1.1 mm, p=0.91) were similar in both groups, Pearson correlation showed that patients with a shorter medical history IIH revealed a smaller OBV (r=0.53, p<0.01). In untreated symptomatic patients (n=7), the effect was greater (r=0.76, p<0.05). Patients who suffered from IIH for less than one year (n=8), total OBV was significantly smaller than in matched controls (116.6±24.3 vs. 149.3±22.2 mm(3), p=0.01). IIH patients with visual disturbances (n=21) revealed a lower OS depth than patients without (8.3±0.9 vs. 10.8±1.0 mm, p<0.01). CONCLUSIONS/SIGNIFICANCE: The results suggest that morphological changes of the olfactory nerve system could be present in IIH patients at an early stage of disease

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Dissociated Representations of Pleasant and Unpleasant Olfacto-Trigeminal Mixtures: An fMRI Study

    Get PDF
    How the pleasantness of chemosensory stimuli such as odorants or intranasal trigeminal compounds is processed in the human brain has been the focus of considerable recent interest. Yet, so far, only the unimodal form of this hedonic processing has been explored, and not its bimodal form during crossmodal integration of olfactory and trigeminal stimuli. The main purpose of the present study was to investigate this question. To this end, functional magnetic resonance imaging (fMRI) was used in an experiment comparing brain activation related to a pleasant and a relatively unpleasant olfacto-trigeminal mixture, and to their individual components (CO2 alone, Orange alone, Rose alone). Results revealed first common neural activity patterns in response to both mixtures in a number of regions: notably the superior temporal gyrus and the caudate nucleus. Common activations were also observed in the insula, although the pleasant mixture activated the right insula whereas the unpleasant mixture activated the left insula. However, specific activations were observed in anterior cingulate gyrus and the ventral tegmental area only during the perception of the pleasant mixture. These findings emphasized for the firs time the involvement of the latter structures in processing of pleasantness during crossmodal integration of chemosensory stimuli

    Olfactory and trigeminal interaction of menthol and nicotine in humans

    Get PDF
    The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation
    corecore